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Various expressions are used to describe the changes in the elastic 
properties of a polycrystalline material  during the process of plastic 
deformation, annealing, etc. leading to the formation of texture. 
Thus, for axial texture of a mater ia l  composed of cubic crystallites 
two groups of formulas have been proposed [1, 2]: 

C r [  = c~[  = - d n  + ~/2o~C, 

~" - c n  + % ~ c ,  C33 - -  

Cr~ = C~** = C~- - V~ ~C, 

Cl~ = C~.~ + V~o ~C, 

C~ = C~ = ~ ,  - % c,C, 

2C~ = ~ r C r C11 - -  12' 
K V = go  

s ~ =  % ~ =  x ~  - vs ~s  ; 

S ~  = -S~. + 1/~.o c*$ ; 

K n =  I'2o. 
(i) 

Here, c~ = a 4 / 9  characterizes the degree of order of the orientation of 

the crystallites in tile texture, a 4 is the ampli tude of the fourth term 
of the expansion of the orientation distribution function in spherical 
functions [1, 2]. The quantities ~i j  and S-ij are the mean elasticity 
characteristics of the isotropic polycrystal,  calculated in the Voigt 
and Reuss approximations, respectively, from the elasticity constants 

of the single crystal, Cij and Sij: 

8 .  = Cl l  - % c, ~ = c1~ + 1/~ c, ~ = c .  + 14 c ;  

~t=g.--~/~3,  ~=S~+~/~S,  S~,=S,u+%S- (2) 

Finally, the quantities C and S in (1) and (2) are the parameters 

of anisotropy for the elastic material :  

C ~ Cl l  - -  612 - -  2C44 , S = $11 - -  S12 -- 1/2 $44 . 

An analysis of the methods of evaluating expressions (1) shows that 
the formulas for c i j T  and S i S  account for, only approximately,  the 
change in the elastic properties of the texture and are essentially equiv- 
alent to the calculations for a quasi-isotropie polycrystal in the Voigt 
and Reuss approximations, respectively. This means that expressions 
(1) are not suitable for describing the properties of materials composed 
of strongly anisotropic crystals, since in this case Cij and ~ij differ 
considerably from the experimental  values of the constants of the 
quasi-isotropic material .  Moreover, formulas (1) cannot be used to 
calculate the properties of strong textures. In these eases, a higher 
approximation is required, and formulas (1) give the necessary basis 
for  calculating the elasticity constants in the Voigt-Reuss-Hill approx- 

imat ion [3]. 
In the  case of a quasi-isotropic polycrystal, Voigt and Reuss aver- 

aging (2) gives the upper and lower limits, respectively, for the true 
values of the mater ia l  constants. As an additional refinement,  Hill 
[3] has proposed using the ar i thmetic  or geometr ic  mean of the Voigt 
and Reuss constants. Numerous experiments have shown that the arith- 
met ic  mean is in good agreement  with the experimental  data and 
differs l i t t le from the theoretical  values of the polycrystal constants 
obtained by more exact methods [4]. Our problem is as follows: using 
(1), to calculate in this approximation the elastici ty properties of axial 
texture. The final expressions prove to be simpler if the geometr ic  
means obtained from (1) are used in the computation. 

In what follows, we denote the elasticity constants of the texture 
in the required approximation by CijT and SliT, and the elasticity 

constants of the quasi-isotropic polycrystal in the same approximation 

by CijO and SijO. 
Easiest to calculate are the shear moduli C~ = (ff~4) -~ and C$6 = 

= (S~) -~ of the texture. In fact, 

"C ' '  e [ C44 \ '/' 
= ; C~ ~ : [--=--1 ~ ' (a)~ ] 

\ Sd~. / 
C l l -  C12" S44 25 (a ~ -- 1) 

a =  2C,tr = 2 (Sn- -SI~ . ) ' ; .  / ( a ) =  ( 3 + 2 a ) ( 2 + 3 a )  ' (3) 

Similarly, for Cd:~ we have 

C66" = (C6~ /S66 )  1/' = C~4 ~ [1 + l h 0  a l  ( a ) ] .  ( 4 )  

The calculation of the remaining constants is more complicated: 

the quantities C n and Sit , C n and Sn, e tc . ,  are not reciprocal, and 
direct calculation of the geometr ic  means is impossible. Expressions 
(1) determine the components of the matrices 11 cij !I and ] sijll in the 
Voigt and Reuss approximations, respectively. We will consider the 
components of the reciprocal matrices 

I[ CU* tl SU* I/ = I (I is the unit matrix). 

By the usual methods [5] it is possible to find separately the eigen- 
values X k of the matrix !~ Cij ~ and A k of the matrix tt Sij 11. 

For a medium with hexagonal symmetry,  only four of the six ei-  
genvalues are different. The eigenvalues X~ of the matrix 11 C~j ~ can 
be calculated from the rule of the geometr ic  mean, i.e., 

s  -1 (h ' - -  1 . . . . .  4) (5)  

where A'~ are eigenvalues of the matrix ti Sij tl. 
Thus, we have four relations containing five unknown texture elas- 

ticity constants Ci:i and S..*:. Two of these relations have already been 
• * 

used in (3) and (4). The missing relation for reconverting from k k to 

Cij can be obtained from the condition 

K v *  = K v = K n - -  K~* = Ko (6) 

wh ich  expresses the fact that the bulk modulus of a texture composed 
of cubic crystals is independent of both the method of averaging and 
the degree of order of the crystal orientations. Using (5) and (6), we 
can find the elasticity constants for axial texture: 

Sn* = $11 ~ - -  3/loa / (a) (Sn o --  Sly~ 

Cl1" = Cn ~ + ~/4#/(a) (On ~ - -  C1~ ~ ; 

83a* = S n  ~ - -  * /0#  (a) ($11 ~ - -  $1~ ~ ; 

C1~* = Cn ~ + 1Ao a / ( a )  (Cn ~ - -  C12 ~ ; 

S1~* = S,~ ~ + 1/lo a / ( a )  69110 - -  Sl@); 

C33" = C n  ~ + 1 / 5 a / ( a )  ( C , ~  - -  C1~~ ; 

S,~* = S~ ~ - -  ~ /4~ / (a )  (Sn ~ - -  S~~ 

Cza* = C12 ~ - -  1/lo ~1 (a) (Cu ~ - -  C12 ~ ; 

$44" = 3~2  - -  ~/~oct (a) (8110 - -  S~2 ~ ; 

C44" = C~4 ~ - -  1/lO a / ( a )  ( O n  ~ - -  C~@) ; 

$66" = S ~  ~ - -  1/lo a / (a) (8,_10 - -  SI~ ~ ; 

6~6" = C~4 ~ + ~/4~ a /  (a) ( C u  ~ - -  C12 ~ " 

From these expressions we find the anisotropy parameters 

S *  = $33" - -  S l a *  - -  1/~ 84~* = - -  1/9 c z / ( a )  ( S n  ~ - -  $12 ~ 
C* = C3a* - -  C13" - -  2C4 ,*  = ' /~ ~ 1  (a)  ( O n  ~ - -  C ~ o ) .  

(7) 

(8) 
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Replacing a in expression (7) with its value from (8), 

formulas analogous to those obtained previously [2] using 

aging: 

we arrive at 
Reuss aver- 

S u * = S .  ~  c S * ;  C ~ * = C ~ r  o §  o C *  

Saa* = $11 ~ -t- z/5 S*; Ca3* ~ Clt ~ + ~/s C* 

Sla* = $1~ ~ --  ~/~ S* ; 

$12" = Sxz ~ § ~/2o S* ; 

$44 ~ = S4f l  - -  a/6 S *  ;. 

So6" = S~ ~ + ~/5 S* ; 

C~a* = C~ ~ --  ~/~ C* 

C,2" = C ~  ~ + ~/20 C* 

C ~ *  = C4a ~ - -  ~/s C* 

CGo* = C~ U + ~12o C* �9 ( 9 )  

We note that, in form, expressions (9) are identical with (1), but 
the quantities S~j and C~j, S;j and C~j are components of the reciprocal 
matrices of the quasi-isotropic aggregate and texture. Since expressions 
(i) and (9), which determine the properties of the texture in different 
approximations, are identical in form, it may be assumed that they 
also retain the same form in higher approximations. This means that 
from measurements of the quantities S* * as, $13, and S~4 on textured ma- 
terial it is possibIe to find exact values of the quantities S~, and S~ 
for the quasi-isotropic aggregate. The quantities San, S~, and S~ can 
be measured using the dynamic resonance method [2, 8]. 

In order to verify the expressions obtained (9), we conducted an 
experiment on textured cylindrical specimens of L-62 brass. These 
were fabricated as follows: the brass bIank was annealed at 600~ for 
1 hi and then subjected to plastic deformation by drawing. As a result 
of this treatment we obtained axial textures of varying intensity. The 
results of the measurements are shown graphicalIy in the figure, which 
also gives the theoretical slope of the lines based on Eqs. (9). Clearly, 
these lines have the same slope as the experimental lines and their 
points of intersection with the ordinate axis give the values of theshear 
modulus (1/S~4) and the Young's modulus (1/Sa~a) of the quasi-lsotropic 
aggregate. 

Thus, in order to determine the elasticity constants of a quasi- 
isotropic material on textured specimens it is sufficient to measure a 
single specimen. In particular, the Young's and shear moduli of the 

i 

$ 

Lines 1 and 2 give the variation of Sa 
and S~a, respectively, with the anisot- 
ropy parameter of thetexture S T. The 
theoretical slope of the lines from re- 

lations (9) is given for comparison. 

quasi-isotropic material can be determined from ~.he expressions 

E* ( 2 % -- q ~-1 
~ " - , - - 7 0 ( ~ - q ) '  ao=~, , ' + T '  f--r7-~ ) ; 

(,~ = s, ,* 6" , ) .  (1o) 
Saa~, a t =  ~ - -  

H e r e ,  E* and G* are the Young's and shear moduli of the textured 
specimen, and o a and o i are the dispersion and isotropic Poisson's 

ratios, respectively. 
Finally, expressions (7) make it possible to determine the anisot- 

ropy of the single crystal and calculate its elasticity constants. This 
is especially impotant for materials that have not yet been obtained 
in the form of single crystals. In order to determine t:hese quantities 
it is necessary to find, apart from the means of elasticity constants 
of the quasi-isotropic material and the elasticity constants of the tex- 
ture, the texture factor a. This can be done usingthe relation between 
a and the so-called texture coefficient C4 introduced by 8unge [9]: 

C 4 = - -  ~n n4~z, 

where n4 = --0.64636 is the spherical function normalization factor for 
cubic symmetry. C4 can also be calculated from the experimental 
x-ray diffraction curve for the investigated texture specimen [1O, 11]. 
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